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Oblique transition was experimentally investigated in a Blasius boundary layer formed
on a flat plate. This transition mechanism was provoked by exciting a pair of
oppositely oriented oblique Orr–Sommerfeld (O–S) modes given by (ω/ωts,±β/βts) =
(1,±1) in the frequency–wavenumber (spanwise) space. Surface waviness with height
∆h and a well-defined wavenumber spectrum that is synchronized with the neutral
O–S wavenumber at Branch I, (αw,±βw) = (αts,I ,±βts,I ), was used to provide a steady
velocity perturbation in the near-wall region. A planar downstream-travelling acoustic
wave of amplitude ε was created to temporally excite the flow near the resonance
frequency, ωts(= 2πfo), of an unstable eigenmode corresponding to kts = kw (where
k = ±[α2 + β2]1/2). Possible mechanisms leading to laminar-to-turbulent breakdown
were examined for various forcing combinations, ε∆h. For small values of ε∆h, a
peak–valley structure corresponding to a spanwise wavenumber of 2βw was observed.
As expected, the maximum r.m.s. narrow-band streamwise velocity fluctuations, ut(fo),
occur at peak locations, which correspond to regions with mean streamwise velocity,
U, deficits. For the largest value of ε∆h, significant mean-flow distortion was observed
in the spanwise profiles of U. Large spanwise velocity gradients, |dU/dζ|, exist
between peaks and valleys and appear to generate an explosive growth in the velocity
fluctuations. The maximum values of ut no longer occur at peak locations of the
stationary structure but at locations of spanwise inflection points. The magnitude
of ut scales with |dU/dζ|. A nonlinear interaction of two non-stationary modes was
conjectured as a possible mechanism for the enhancement of the streak amplification
rate.

1. Introduction
Many important gaps remain in our understanding of laminar-to-turbulent tran-

sition in fluid mechanics. The state of a boundary layer, laminar or turbulent, dra-
matically affects parameters such as skin friction, form drag, heat transfer rates, etc.
Practical applications that are affected include, but are not limited to, controllability
of airfoils and high-lift devices, turbine and engine performance, and aircraft and
spacecraft performance. A fundamental understanding of the laminar-to-turbulent
transition process can lead to improved transition prediction techniques and eventu-
ally transition control methodologies.

It has long been recognized that the occurrence of three-dimensional disturbances
(secondary instability) is necessary for the laminar-to-turbulent transition process (see
for example Klebanoff & Tidstrom 1959; Klebanoff, Tidstrom & Sargent 1962). The
breakdown scenario observed by Klebanoff et al. is referred to as fundamental or
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K-type breakdown and begins with the amplification of initially two-dimensional
Tollmien–Schlichting (T–S) waves. As these primary T–S waves exceed a threshold
value of typically 1% of the free-stream velocity, three-dimensional structures evolve
with spanwise periodicity of alternating peaks and valleys and result in an aligned
peak–valley structure. Using Floquet theory of secondary instability, Herbert (1985)
showed that for large initial two-dimensional T–S amplitudes relative to random
background disturbances, primary resonance occurs leading to K-type breakdown. A
different route to transition, subharmonic breakdown, was first observed Knapp &
Roache (1968) on an ogive cylinder and was characterized by a staggered peak–valley
structure. Self-excited (three-dimensional excitation derived from the background dis-
turbance environment) and/or controlled subharmonic spectral energy have been
experimentally observed on flat-plate boundary layers (e.g. Kachanov, Kozlov &
Levchenko 1977; Saric, Kozlov & Levchenko 1984; Saric & Thomas 1984; Kachanov
& Levchenko 1984; Corke & Mangano 1989). Subharmonic breakdown is charac-
terized by small two-dimensional T–S amplitudes (typically less than 0.3% of the
free-stream velocity) and produce either a C-type (see Craik 1971) or H-type (see
Herbert 1988) breakdown, where H-type is the more general type of subharmonic
instability that occurs for a broad band of spanwise wavenumbers as a result of
parametric resonance.

The evolution of wavepackets (see Gaster & Grant 1975) in laminar boundary
layers has also been studied as a model of natural transition to turbulence since a
wavepacket produces a broad spectrum of frequencies and spanwise wavenumbers.
The evolution of a localized disturbance in a laminar boundary layer from a low-
amplitude wavepacket to the formation of a turbulent spot has been experimentally
studied by Cohen, Breuer & Haritonidis (1991) and Breuer, Cohen & Haritonidis
(1997). In the linear stage of the wavepacket evolution, the wavenumber–frequency
spectra indicated that most of the energy was concentrated in two-dimensional
modes centred about a fundamental frequency corresponding to the most-amplified
mode according to linear stability theory (LST). As nonlinear effects evolve in the
wavepacket, increased energy corresponding to oblique modes at a frequency one-
half of the fundamental (subharmonic modes) were observed to be dominant in the
wavenumber–frequency spectra. The spanwise wavenumber corresponding to these
oblique modes suggested that the modes grew as a subharmonic resonance triad as
described by Craik (1971).

The transition scenarios discussed above all start with strong two-dimensional
modes, but as the three-dimensional modes gain energy, transition advances rapidly.
The selection process of boundary layers has identified oblique modes as an essential
ingredient for the onset of laminar-to-turbulent breakdown. Recognizing that direct
seeding of oblique modes may be very efficient as a transition promoter, Schmid &
Henningson (1992), using direct numerical simulations (temporal) applied to a chan-
nel flow, investigated a transition mechanism involving a pair of oblique O–S modes
(f,±β) in the frequency/spanwise-wavenumber space, the so-called oblique transition.
They found that this transition scenario occurred at a much faster time scale than
the one for secondary instability, assuming the same input disturbance energy for
both scenarios. They also found that nonlinear interactions were mainly responsible
for the initial energy transfer to other spanwise modes that then grew by linear
mechanisms. The dominance of the linear transfer mechanism was reduced as tran-
sition was approached. Later, Joslin, Streett & Chang (1993) and Berlin, Lundbladh
& Henningson (1994) applied spatial numerical simulations covering the transition
process to a Blasius boundary layer. This transition scenario was conjectured as a
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three stage process: (i) a nonlinear interaction of the primary disturbances (f,±β)
to generate a streamwise vortex system (0, 2β), (ii) a transient growth region of low-
and high-speed streaks produced by the vortex system, and (iii) ultimate breakdown
of the streaks instigated by non-stationary disturbances due to secondary instability.
Subcritical transition resulting from transient disturbance growth was found to be
possible, thereby bypassing (see Morkovin 1969) the exponential amplification of T–S
instabilities.

Elofsson & Alfredsson (1998, 2000) and Wiegel (1996) verified oblique transition in
physical experiments. The experiment by Elofsson & Alfredsson (1998) was conducted
in a plane Poiseuille flow air channel in which oblique waves were generated by two
vibrating ribbons, one on each wall. Wiegel’s (1996) and Elofsson & Alfredsson’s
(2000) experimental investigations were conducted in zero-pressure-gradient bound-
ary layers where controlled disturbances in the form of periodic blowing/suction were
introduced through surface slots. Other experiments have been conducted to study
the algebraic growth (see Landahl 1980 for discussion on algebraic instabilities) of
the streaky structures and ultimate breakdown of the flow by direct generation of
streaks. The origin of the streaks is not so important since all of these mechanisms
generate streaks, some more efficiently than others depending on the initial conditions.
Once the streaks are established, the mechanisms thereafter are the same. Elofsson,
Kawakami & Alfredsson (1999) experimentally studied in a plane Poiseuille flow
the development and stability of streamwise streaks generated by continuous suction
through small wall slots. They found that if the streak amplitude exceeded a threshold
value, secondary instability ensued in the form of travelling waves that give rise to
high r.m.s. (root-mean-square) fluctuating velocities in the region of large spanwise
mean-flow gradients. Similar findings were obtained by Bakchinov et al. (1995) in a
flat-plate boundary layer modulated by stationary streamwise vortices generated by
means of roughness elements arranged in a regular spanwise array. Wiegel & Fis-
cher (1995) used non-intrusive optical techniques to study the structure of a Blasius
boundary layer undergoing transition. They utilized controlled input disturbances
in the form of periodic pressure oscillations through surface slots to control initial
amplitudes of possible two-dimensional and oblique disturbances. By adjusting the
relative amplitudes of the disturbances, they were able to visualize the following tran-
sition types: fundamental (K-type), subharmonic (C-type and H-type), and oblique
type transition. For the oblique transition scenario, streamwise streaky structures with
small α were observed that ultimately resulted in breakdown to turbulence – see also
Berlin, Wiegel & Henningson (1999).

The primary objectives of this research were to provide careful experiments that
can identify the controlling physics of the laminar-to-turbulent transition process, in
particular oblique transition, and to supply a potential database for comparison with
theory and/or numerical simulations. This study is a logical extension of the work
by King & Breuer (2001) where two-dimensional and oblique T–S disturbances were
introduced into a Blasius boundary layer via a non-localized receptivity mechanism.
The earlier work demonstrated the use of a planar downstream-travelling acoustic
wave and well-defined receptivity sites to produce a variety of T–S boundary-layer
instability waves. A similar receptivity mechanism was utilized in the current study
to excite the desired boundary-layer disturbance modes. Because of the particularly
clean method used for the generation of the pair of oppositely oriented oblique
modes via acoustic–roughness interactions, the approach provides a framework for
making accurate measurements, and to the authors’ knowledge such measurements
have not been made in boundary-layer flows. The time scales and the spatial scales
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are completely decoupled – the former being provided by the acoustic field and the
latter coming from the surface roughness pattern. Experimental documentation of the
subsequent development of the broadband boundary-layer disturbance evolution for
various forcing combinations (ε∆h) was acquired. The modal velocities, i.e. for a given
frequency and spanwise wavenumber, were mapped along the streamwise direction
for the primary (or initially excited) modes and higher-order modes resulting from
nonlinear interactions. The experimental results were compared qualitatively and
quantitatively, when possible, with theoretical and numerical simulation results when
available.

2. Experimental details
2.1. Facility and model

The experimental setup of the current study is essentially the same as used by King
& Breuer (2001) for the high-precision receptivity measurements. A brief description
is given here for completeness. The study was conducted in the 2 ft (60.96 cm) by
3 ft (91.44 cm) Low-Speed Wind Tunnel located at NASA Langley Research Center.
The maximum attainable speed in this closed-loop tunnel is approximately 45 m s−1

with measured turbulence intensities, u/U∞, of approximately 0.1% in the range
of 0.1 < f < 400 Hz. Two motorized traverse stages, one with streamwise travel
of 2.1 m and the other with vertical travel of 150 mm, are located just above the
test section ceiling. A 3.8 cm streamwise slot (covered with rectangular wool felt
strips to minimize air inflow/outflow) along the centreline of the tunnel ceiling is
provided to accommodate support for a third traverse motion. This third spanwise
(z) traverse component with a travel of 11.43 cm was installed in the tunnel test
section. Streamlined cross-sections of the stage support and probe holder support
were selected to minimize flow interference (maximum thickness-to-chord ratios are
16% and 15%, respectively). The quoted accuracy of the spanwise component is
±125 µm m−1.

The model tested was a 12.7 mm thick flat aluminium jig plate with a 24:1 elliptical
leading edge (see figure 1). The highly polished (0.2 µm r.m.s. surface finish) plate was
equipped with a rectangular hole located 24.6 cm from the model leading edge for
the installation/removal of plate inserts. One plate insert was used as the baseline
(smooth sample) and three were used to mount the receptivity sites.

2.2. Surface roughness and acoustic excitation

Oppositely oriented oblique O–S modes were introduced into the boundary layer using
surface roughness of height ∆h and free-stream acoustic excitation with amplitude
uac as done by King & Breuer (2001) for two-dimensional and oblique modes. The
roughness patterns were generated by applying a photolithographic process to copper-
plated circuit boards. The pattern considered is represented in figure 2 (the shaded
areas represent copper and flow is from top to bottom). The pattern consisted of two
oppositely oriented oblique waves with ψw = ±30◦. Highly localized disturbances are
possible as a result of the sharp steps formed by the copper strips at the leading and
trailing edges of the samples. To mitigate this effect, the copper strips were feathered
down to the substrate material 6.4 mm from both the leading and trailing edges of the
samples. Different roughness heights were considered by using three types of boards
with different copper plating thicknesses. The roughness patterns considered in this
study are presented in table 1.

The tunnel was equipped with an array of five 203.3 mm diameter woofers (four
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Sample ∆h(µm) λw,x (mm) ψw(deg.)

1 17.8 52.36 ±30
2 35.6 52.36 ±30
3 71.1 52.36 ±30

Table 1. Roughness samples tested, where λw,x is the streamwise wavelength.
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Figure 1. Top and side views of flat plate model. The shaded region represents the location of the
insert. Vertical distances not to scale.
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Figure 2. Top and side views of receptivity site investigated for ψw = ±30◦.
Flow is from top to bottom.

flush mounted on the upstream wall and the other on the downstream wall) for
acoustic excitation. The source of the controlled acoustic field was generated by
using a dual-channel universal source and amplified with a stereo power amplifier –
one channel for the upstream speakers and the second channel for the downstream
speaker. The ability to control the absolute amplitude and relative phase of the two
channels made it possible to generate the required acoustic field in the test section.



182 R. A. King and K. S. Breuer

2.3. Data reduction

Most of the experimental data, streamwise velocity component, were measured using
a single-element hot-wire probe with a constant-temperature anemometer system.
Broadband and phase-locked velocity fluctuations were acquired using a typical sam-
pling rate of 1 kHz. The mean tunnel properties (pressures, temperature and relative
humidity) were measured and recorded at each data point. Estimated uncertainties
of measured mean velocity, U, are in the range ±1.4% for Umax ≈ 11.1 m s−1 to
±9.0% for Umin ≈ 1 m s−1. Uncertainties of r.m.s. fluctuating velocity, u, and Reynolds
number, Rel (= U∞l/ν), are ±4.7% and ±4.0%, respectively. Details of the error
analysis are given by King (2000, Appendix A).

Because of the type of acoustic excitation (i.e. continuous wave), the measured
r.m.s. narrow-band velocities ut exp(iφt) – amplitude ut and phase φt – included the
Stokes wave (present whenever an oscillating velocity disturbance exists in the free
stream), the T–S response, and any other extraneous response (e.g. probe vibration)
all at the same excitation frequency fo. The methods utilized to decompose the
T–S wave from the measured disturbance are those discussed by King & Breuer
(2001). One decomposition approach is to make short streamwise surveys that cover
approximately one T–S wavelength, λts, at a fixed height in the boundary layer. Over
one λts, the phase of the Stokes wave (and for that matter any probe vibration) is for
all practical purposes constant. Since the T–S amplitude does not vary significantly
over one λts, the centroids (Stokes wave + vibration) and the average radii (T–S
amplitudes) of the off-centred spirals, when plotted on the polar complex plane,
can be computed. The second decomposition approach used here to extract the T–S
wave component utilized two sets of wall-normal disturbance profiles at the same
x-locations and with the same acoustic forcing levels. One set was taken with the
smooth surface (including the Stokes wave, T–S wave due to leading-edge receptivity,
and extraneous disturbances), and the other with the surface roughness (including
the same components as smooth surface plus the T–S wave due to roughness). The
T–S wave due to roughness was obtained by subtracting in the complex plane the
smooth surface profiles from the rough surface profiles. As discussed by King &
Breuer (2001), the T–S component here includes receptivity due to acoustic scattering
at the roughness sites of (i) the free-stream acoustic field and (ii) the leading-edge
generated T–S wave. The roughness receptivity due to the scattering of the leading-
edge generated T–S wave at the roughness sites was negligibly small compared to
that due to the free-stream acoustic field.

2.4. Experimental approach

The experiment was conducted with a nominal free-stream velocity of U∞ = 11.1 m s−1

and temperature of 21 ◦C. A nominally zero-streamwise-pressure-gradient boundary
layer was obtained for flow over a flat plate (Blasius flow). A planar downstream-
travelling acoustic wave was used to temporally excite the flow with frequency
fo = 71 Hz in the same manner as done by King & Breuer (2001). This translates
to a dimensionless frequency for the excited oblique O–S modes of F = 55 × 10−6

(= 2πfν/U2∞). The streamwise spatial extent of the three-dimensional surface rough-
ness was ∆x = 0.56 m. The location of the surface roughness was selected such that
its midpoint was near the location of Branch I (RI = 578) for the primary oblique
waves, to enhance the receptivity process. The wavenumber of the surface roughness
kw was selected such that it matched the neutral O–S wavenumber kts at Branch I,
i.e. (αw,±βw) = (αts,I ,±βts,I ), to provide a near-resonance condition. Three roughness
heights, ∆h, and three acoustic forcing levels, ε (= uac/U∞), were examined resulting
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∆h1 ∆h2 = 2∆h1 ∆h3 = 4∆h1

ε1 ε1∆h1 2ε1∆h1 4ε1∆h1

ε2=̇2ε1 2ε1∆h1 4ε1∆h1 8ε1∆h1

ε3=̇4ε1 4ε1∆h1 8ε1∆h1 16ε1∆h1

Table 2. Roughness heights and forcing levels examined; ∆h1 = 17.8 µm, ε1 = 7.6× 10−5

(SPL = 84.8).
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Figure 3. Normalized velocity profiles at selected streamwise locations along the tunnel centreline.

in a matrix configuration as depicted in table 2. The smallest ∆h and ε examined are
∆h1 = 17.8 µm and ε1 = 7.6× 10−5 (i.e. SPL = 84.8).

3. Results and discussion
3.1. Base flow measurements

The base flow in this study is the same as that used by King & Breuer (2001) to
acquire the two-dimensional and oblique receptivity measurements. A synopsis of
those results is presented here. The values of the experimental shape factors were
H = 2.60±1.5%, in excellent agreement with the theoretical Blasius value of H = 2.59.
A plot of the measured normalized velocity profiles (along the tunnel centreline)
and the theoretical Blasius profile versus the normalized wall-normal coordinate η
(= [y/xv]Re1/2

xv
) is presented in figure 3. Note that xv is the streamwise distance

measured relative to the experimentally acquired virtual origin, x = 65.8 mm. Free-
stream turbulent intensities of (u/U)∞ ≈ 0.1% (0.1 < f < 400 Hz) were measured
over the entire streamwise survey region. Measured free-stream PSDs of (u/U)∞
indicate decaying spectra with the dominant energy contained within 0.1 < f < 1 Hz
(see the typical plot in figure 4). Some unavoidable electronic noise is observed in
the spectrum due in part to extremely low signal levels. Correlations between signals
obtained from wall-mounted dynamic pressure sensors (four) confirm the absence
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Figure 5. Measured free-stream acoustic field generated in the test section above the model
surface: (a) amplitude and (b) phase streamwise distributions.

of coherent disturbances in the free-stream environment near the designed forcing
frequency, fo, of the experiment that can possibly distort the interpretation of the
results (details given by King 2000, his Appendix B).

Measurements of the controlled free-stream acoustic field are shown in figure 5 in
the form of (a) amplitude and (b) phase streamwise distributions. Data with only the
upstream speakers and only the downstream speaker activated are also presented for
completeness in the figure. The phase distribution in part (b) of the figure indicates a
predominantly downstream-travelling wave. Values of the acoustic r.m.s. amplitude,
uac, used for normalization in subsequent sections are the average values measured
over the plate insert.

3.2. Peak–valley structure of the disturbance field

A detailed view of the three-dimensional surface roughness pattern (recall figure 2)
along with a coordinate description is shown in figure 6. The free-stream flow is in
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Figure 6. Detailed view of the surface roughness pattern and coordinate description
(flow from bottom to top).
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Figure 7. Root-mean-square narrow-band velocity at fo, (a) amplitude and (b) phase, measured
along spanwise coordinate ζ at various streamwise locations for a forcing combination of zero (ε2,
∆h = 0). Measurements acquired at a wall-normal location corresponding to U/U∞ ≈ 0.40.

the direction of x denoted in the figure. The origin of the spanwise coordinate z was
taken as the tunnel centreline. Because the centrelines of the tunnel and roughness
patterns did not coincide, a new normalized spanwise coordinate ζ was introduced
with an offset (15.2 mm). The spanwise coordinate was defined as ζ = (z + 15.2)/λw,z
where z is in units of mm and λw,z is the spanwise wavelength of the roughness
(λw,z = 90.7 mm). This gives a value of ζ = 1 for one spanwise wavelength. Streamwise
velocity measurements were acquired along the spanwise direction near the wall-
normal locations corresponding to the maximum amplitude of the three-dimensional
disturbance eigenfunction. The spanwise traverses typically extended approximately
one spanwise wavelength of the wall roughness. Spanwise profiles of the narrow-band
r.m.s. streamwise disturbance velocity, ut, were acquired for a free-stream acoustic
level of ε2 on the smooth model surface, ∆h = 0. These measurements were obtained
to characterize the background spanwise disturbance environment, which is a function
of the damping screens in the tunnel. Plots showing the spanwise distribution of ut
and φt, the disturbance phase angle, are presented in figure 7. The profiles were taken
at a wall-normal location near the maximum of ut over a streamwise distance of
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838 < R < 1157 (101.6 < x < 188.0 cm). Note that R ≈ 85.92x
1/2
v where xv is in cm.

No significant structures in the spanwise ut distribution were observed as is evident in
part (a) of the figure. Similarly, spanwise variations in φt were not evident as indicated
in part (b). The results demonstrate a relatively two-dimensional disturbance field at
fo over the limited spanwise extent of the measurements.

Results with the three-dimensional surface roughness will first be presented for
a scenario where laminar-to-turbulent breakdown was not observed. The forcing
combination used to obtain these results was ε3∆h1. Figure 8 shows a plot of mean
streamwise velocity data versus the spanwise location, acquired at a wall-normal
location near the maximum of ut. The mean flow structure was very similar to the
classical work of Klebanoff et al. (1962), although generated by a different mechanism.
The location of the peaks and valleys resulting from the streaks are indicated in the
figure. The peaks and valleys are defined as regions corresponding to U deficits
and U surpluses, respectively. The distorted base flow resulted from the streaky
structures believed to be produced by the lift-up effect (see Landahl 1975) of the
stationary vortex system (f/fo,±β/βw) = (0,±2) induced by the nonlinear interaction
of the primary modes (1,±1). The amplitude of the mean-flow distortion was seen
to increase with downstream location. Data for the disturbance amplitude and phase
at fo corresponding to this configuration are presented in figure 9. The peaks and
valleys are again indicated in part (a) of the figure. Note that the maximum ut near
ζ ≈ 0.5 shifts to a larger ζ value located between the peak (ζ ≈ 0.5) and adjacent
valley (ζ ≈ 0.8) for R > 1124 (x > 177.8 cm). This is believed to be driven by spanwise
mean-flow gradients (see the next paragraph for a discussion). The spanwise extent
of the peaks was larger than that for the valleys. The valleys became narrower with
downstream distance. The disturbance amplitude ut was seen to decay for the larger
R values after the initial amplification. A 180◦ phase shift in the disturbance phase
φt was observed between adjacent peaks as seen in figure 9(b).
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Measurements were also obtained using a larger forcing combination (ε3∆h3)
for a scenario where laminar-to-turbulent breakdown occurred. Significant three-
dimensionality associated with low- and high-speed streaks was observed compared
to the results in figure 8. The mean velocity (data not shown) increased by as much as
75% in the valley regions. As before for the case with ε3∆h1, the mean flow distortions
were biased to higher velocities. The corresponding narrow-band disturbance velocity
amplitudes are presented in figure 10. For R < 967 (x < 133.4 cm), the spanwise
distribution of ut was largely consistent with results obtained for ε3∆h1 (refer to fig-
ure 9a). The spanwise disturbance distribution took on a different character at R = 991
(x = 139.7 cm). An upwelling of ut on both sides of the peaks was observed. Explosive
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Figure 11. Detailed spanwise distribution of the measured (a) mean velocity and (b) r.m.s. nar-
row-band velocity at R = 1015 (x = 146.1 cm) for ε3∆h3 and ψw = ±30◦. Curves of the polynomial
regression fit to the measured data and its derivative are also included in the plots. Data obtained
at y/δ ≈ 0.26 for the undisturbed profiles.

growths in the value of ut at these spanwise locations were realized with streamwise
distance. Velocity fluctuations as large as ut/U∞ ≈ 9% were measured in these surveys
at R = 1082 (x = 165.1 cm). Similar observations regarding the phase shift of 180◦
were evident in φt between adjacent peaks for this configuration relative to the con-
figuration for ε3∆h1 (refer to figure 9b). To understand the origin of this instability,
closely spaced measurements were acquired over approximately half the spanwise
wavelength. Data are presented in figure 11 for R = 1015 (x = 146.1 cm). In part
(a) of the figure, the measured mean velocity data and a corresponding polynomial
regression curve fit are presented. The regression fit, which gives a good representation
of the measured data except near the end points, was computed to facilitate the cal-
culation of the mean spanwise velocity gradient dU/dζ. The spanwise distributions of
the fluctuating velocity and absolute spanwise gradient are presented in figure 11(b).
The spanwise locations of the maximum value of |dU/dζ| coincide with the locations
of large velocity fluctuations. The magnitude of ut also scales with |dU/dζ|. This
intensification of ut appeared to be driven by the mean spanwise gradient dU/dζ.
The observed intensification is believed to result from nonlinear interactions of the
primary instability modes or a secondary instability. Similar finding were reported by
Elofsson & Alfredsson (1998) for oblique transition in plane Poiseuille flow.

Power spectral densities at three spanwise locations are presented in figure 12
corresponding to the data presented in figure 11. The locations ζ = 0 and ζ =
0.25 correspond to a peak and valley, respectively; ζ = 0.17 represents a location
of strong spanwise mean shear. All the spectra were dominated by the energy at
the forcing frequency fo and higher harmonics. Similar harmonic cascades in the
early nonlinear stages were noted in spectra observed by Breuer et al. (1996) and
King & Breuer (2001) for two-dimensional localized and non-localized receptivity,
respectively. One notable feature in the current spectra is the appearance of energy
in the subharmonic frequency band not observed by King & Breuer (2001) for
the laminar-to-turbulent breakdown scenario with two-dimensional roughness. More
on the observed energy in the subharmonic frequency band will be provided later.
For the spectra at the peak location (ζ = 0), the energy bands at the fundamental
and higher-harmonic frequencies are narrower than the corresponding bands for the
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for three spanwise locations (ζ = 0, 0.17, and 0.25). Data, corresponding to figure 11, obtained at
y/δ ≈ 0.26 for the undisturbed profiles.

valley location. In contrast, the spectra results (not shown) obtained upstream of the
observed upwelling of ut in the spanwise profile (R < 967 or x < 133.4 cm) indicated
broader energy bands at the fundamental and harmonic frequencies for peak locations.
The largest broadband r.m.s. velocity u was shifted from the peak locations for x
distances upstream of the upwelling in the ut spanwise profiles to spanwise locations
corresponding to maximum spanwise mean shear further downstream.

Distortion to the base flow was also examined with wall-normal measurements
of the streamwise velocity field at spanwise locations corresponding to peaks and
valleys. Mean velocity measurements acquired under the influence of acoustic forcing
and/or wall roughness were used to compute a velocity deficit, δ(U/U∞), relative to
the unperturbed flow (smooth surface without acoustic forcing). The velocity deficit
is defined as δ(U/U∞) = U/U∞ − Uref/U∞ where U and Uref denote the perturbed
and unperturbed (reference) velocities, respectively. The reference velocity profiles
were first linearly interpolated to the wall-normal coordinate, η, of the perturbed
profiles before the subtraction was performed. The Uref profiles were obtained along
the tunnel centreline at the desired streamwise locations (refer to profiles in figure 3).
Profiles of the velocity deficit for various forcing combinations and spanwise locations
are presented in figure 13. The measurements shown were all acquired at R = 1038
(x = 152.4 cm). Results on the smooth plate with no controlled forcing (ε = 0, ∆h = 0)
are presented in part (a) of the figure for three spanwise locations over a range of
approximately one spanwise wavelength. The velocity deficits were all within 1% of
the U∞. The velocity deficits in part (b) of the figure were obtained at a peak location
(ζ = 0). Measurable velocity deficits were observed for all forcing combinations, even
for cases where either the acoustic forcing level, ε, or the roughness height, ∆h, was
zero. Even though the measured acoustic leading-edge receptivity coefficient was small
(see King & Breuer 2001), the integrated effect of the T–S wave generated at the
leading edge is measurable and produces a mean flow distortion (see (ε2, 0) case in
figure 13b), which is not evident for the smooth surface without the applied acoustic
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Figure 13. Wall-normal profiles of the velocity deficit for various forcing combinations acquired
at R = 1038 (x = 152.4 cm) and selected spanwise locations. (a) Smooth plate (ε = 0, ∆h = 0);
(b) ζ = 0, (c) ζ = 0.25, (c) ζ = 0.5; ψw = ±30◦ (symbols are the same for b–d ).

forcing (see figure 13a). This is partly due to the large two-dimensional linear growth
rates compared to oblique growth rates. For the case (ε = 0, ∆h = ∆h2), the flow
distortion is believed to result from the interaction of the background free-stream
turbulence with the roughness. Velocity deficits as large as 7% of U∞ were detected
at η ≈ 1.7 for the largest forcing combination (ε3∆h3). For forcing combinations that
did not lead to breakdown, velocity deficits were typically less than 3% of U∞. For
the valley region shown in figure 13(c), velocity deficits were again observed for all
forcing combinations that did not lead to breakdown. However, for the largest forcing
combination that culminated in breakdown, a velocity surplus of approximately 6%
was realized at a wall-normal location of η ≈ 0.7. Velocity surpluses as large as 25%
of U∞ (data not shown) were measured for streamwise distances of x = 188.0 cm
(R = 1157). The profiles in figure 13(d ) correspond to another peak location at a
spanwise distance of λw,z/2 from the data shown in part (b). Similar trends in the
velocity deficits at the peak locations were observed as expected. The velocity-deficit
profiles of the perturbed boundary layer suggest a tendency towards wall-normal
inflectional velocity profiles, U(η), except for the velocity profiles acquired in the
valley regions downstream of the onset of laminar-to-turbulent breakdown.
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3.3. Disturbance evolution

Three-dimensional disturbance eigenfunctions were obtained from the wall-normal
measurements of the streamwise velocity. Example plots of the amplitude and phase
of the measured eigenfunction are shown in figure 14 along with the measured (see
King & Breuer 2001) and computed oblique O–S eigenfunction for ψw = 30◦ (i.e.
single oblique waviness) at R = 943 (x = 127 cm). The spanwise location of the
measured three-dimensional disturbance profile (ψw = ±30◦) was obtained at ζ = 0,
the centreline of the wall roughness pattern. The data presented in the figure were
all obtained with the same forcing product, ε2∆h2. Note that the three-dimensional
eigenfunction presented here represents the phase-locked velocity fluctuation at fo for
all values of the spanwise wavenumber β. The O–S and three-dimensional amplitude
eigenfunctions in figure 14(a) show remarkable qualitative agreement. The maximum
amplitude of the three-dimensional eigenfunction is approximated 15% larger than
the maximum for the oblique O–S mode. This larger value of the maximum amplitude
was possibly due to the contributions from other spanwise modal components. The
phases of both measured eigenfunctions and LST results are in excellent agreement
as depicted in figure 14(b). The near-wall features of the phase reversal were captured
in the measurements for η < 2. The r.m.s. eigenfunction amplitudes normalized by
uac and h (= ∆hn/∆h1 where n = 1, 2 or 3) are presented in figure 15 for various
values of the forcing product. The outer peak of the normalized profiles indicate a
near linear response with forcing product. The same linear response was not observed
for the inner peak (maximum). One plausible explanation may be related to the
strength of the vertical vorticity component resulting from the distorted mean flow.
The streamwise velocity contains a strong component due to the vertical vorticity. The
inner peak of the eigenfunctions has been shown by Cohen et al. (1991) to be affected
by the vertical vorticity component that is driven by the wall-normal mean shear.
Since the mean shear and consequently the vertical vorticity tend to zero outside the
boundary layer, the outer peaks of the eigenfunctions are not significantly influenced
by the vertical vorticity component.

Wave kinematics were computed using closely spaced velocity data measured
over a streamwise distance of approximately 1.5λw,x. Measurements were acquired
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at ζ = 0 (peak) and ζ = 0.25 (valley) at a fixed wall-normal location near the
maximum amplitude of the three-dimensional eigenfunction. The disturbance phase
speeds measured were in the range of 0.34 < cph/U∞ < 0.37 (c̄ph/U∞ = 0.35) at a
streamwise location corresponding to R ≈ 1038 for all possible forcing combinations.
The wall-normal location of the critical layer (η ≈ 1) was just below the location
corresponding to the maximum amplitude of the three-dimensional eigenfunction
(η ≈ 1.2). Phase speed results are consistent with those measured for an oblique O–S
mode by King & Breuer (2001).

As a measure of the streak amplitude, ∆U was defined as the difference between the
maximum (valley location) and minimum (peak location) value of U in the spanwise
profile at a given streamwise and wall-normal location. A plot of the streak amplitude
versus streamwise distance is presented in figure 16 for two forcing combinations,
ε3∆h1 and ε3∆h3. The spanwise U measurements were obtained at wall-normal lo-
cations near the maximum eigenfunction amplitude at fo. Streak amplification was
observed for both scenarios for large downstream distances. For the configuration
where the flow remained laminar (ε3∆h1), ∆U remained relatively constant over the
range 838 < R < 1038 (101.6 < x < 152.4 cm) and streak amplification was observed
further downstream (R > 1038). For the largest forcing product where nonlinear
breakdown occurred, streak amplification was observed for all measurements. The
growth rate was seen to increase at R = 967 (x = 133.4 cm) near the first occurrence
of the upwelling of ut on the sides of peaks in the spanwise profiles. The growth rate
then decreased further downstream at R = 1038 (x = 152.4 cm). It is interesting to
note that the streak amplitudes measured at the first streamwise position (R = 838
or x = 101.6 cm), which was approximately 21 cm downstream of the trailing edge
of the roughness samples, were the same for both forcing combinations (factor of 4
difference in ε∆h). Since the stationary streamwise vortex system (0,±2) was respon-
sible for the formation of the streaks, this suggests that the streamwise vortex systems
produced by the nonlinear interaction of the primary modes (1,±1) were of equal
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Figure 16. Streamwise distribution of the measured streak amplitude, ∆U, at the indicated forcing
combinations. Measurements were acquired at wall-normal locations corresponding to U/U∞ ≈ 0.40
at ζ = 0.

strengths for both forcing combinations. The equal strengths of the vortex systems at
R = 838 may imply that the initial nonlinear interaction reached a saturated state by
R = 838 (sufficient data are not available for upstream locations). This leads one to
postulate that the significant difference observed in the streak amplification rates for
R > 838 was primarily due to nonlinear interactions of non-stationary boundary-layer
disturbances assuming some threshold amplitude of the (0,±2) mode was satisfied.

It was instructive to examine the disturbance evolution in the frequency–
wavenumber plane. This was done by conducting spanwise surveys of the streamwise
velocity at wall-normal locations near the maximum eigenfunction amplitude at fo
for several x-locations. The spanwise surveys extended 101.6 mm (0 < ζ < 1.12) with
a spacing of either 4.1 mm or 5.1 mm. Temporal Fourier transforms of the velocity
were computed at each data point and the energy in a 2 Hz bandwidth about the
desired frequencies (fo, 2fo, 3fo, . . .) was computed. Spanwise energy profiles were then
constructed for each desired frequency using the energy computed from the temporal
spectra and the corresponding spanwise locations. Spatial Fourier transforms were
then applied to the spanwise energy profiles to obtain the modal components of the
velocity, ut(f, β). Figure 17 presents results obtained for the forcing combinations
discussed above. Modal velocities are presented for (i) the primary oblique modes
(1, 1), (ii) the first set of nonlinear interactions (0, 0), (0, 2), (2, 0) and (2, 2), and (iii)
selected higher-order interactions (1, 3), (3, 1) and (3, 3). Note that the ± on the span-
wise wavenumber component was dropped. For the configuration where the flow
remained laminar (ε3∆h1), the modal data in figure 17(a) indicate a dampening of all
the significant non-stationary modes after some initial amplification. However, when
laminar-to-turbulent breakdown was present (ε3∆h3), all non-stationary modes were
seen to amplify significantly as expected (see figure 17b). Excellent qualitative agree-
ment between the measured modal velocities in figure 17 and the simulation results of
Joslin et al. (1993) was observed as described below. For the simulation where the flow
remained laminar, all non-stationary modes were first amplified and then dampened.
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The streamwise vortex mode (0, 2) was seen to have an initial amplification signifi-
cantly larger than the other modes due to the self-interaction of the primary modes
(1, 1) in the simulation. The fact that the current experimental disturbance input did
not contain a (0, 2) mode implies that the same was true for the current results in
that the (0, 2) mode was more than an order of magnitude larger than any other
non-stationary mode. The (1, 3) mode, which resulted from a nonlinear interaction of
the (0, 2) and (1, 1) modes, was seen to overtake the first set of excited modes, namely
the (2, 0) and (2, 2) modes, in both the simulation and experiment. For the simulation
results with breakdown, the (0, 2) mode is again the dominant higher-order mode as
in the experimental results. The non-stationary modes now grow with significantly
larger growth rates than the case where the flow remained laminar.

For comparison, the modal velocity data for the (1, 1), (0, 2) and (1, 3) modes are
presented in figure 18 for both forcing combinations. The open symbols represent
data for ε3∆h1 and closed symbols for ε3∆h3. The relative amplitudes between the
corresponding modes are clearly illustrated in the figure. The primary oblique (1, 1)
mode at R = 838 for both forcing products was approximately equal, indicating that
the (1, 1) modes may be in a saturated state. The modal velocity corresponding to the
(0, 2) mode has a similar amplification curve as the streak amplitude ∆U presented
earlier (see figure 16). The modal data also support the conclusion drawn earlier that
the (0, 2) modes at R = 838 were of equal strength despite the difference in the initial
forcing amplitudes, indicating a saturated (0, 2) mode at R = 838. However, the same
was not true for the non-stationary (1, 3) mode at R = 838. For the larger forcing
amplitude, the (1, 3) mode is expected to have a larger initial amplitude due to the
nonlinear interaction of the (1, 1) and (0, 2) modes followed by a subsequent growth
due to a linear mechanism. This is clearly illustrated in the figure where the modal
(1, 3) velocity for the largest forcing combination was approximately a factor of 20
larger than that for ε3∆h1. It is plausible that after some critical amplitude of the
(1, 3) mode was reached, a nonlinear (feedback) interaction of the (1, 1) mode with the
(1, 3) mode was responsible for the enhancement of the stationary (0, 2) mode. These
results support the conjecture proposed earlier concerning the observed differences
in the growth rates of the measured streak amplitudes with the forcing-combination
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amplitude. The energy transfer between modes appears to favour the low frequencies
as depicted in the modal velocity data in figure 17 and other data not shown. Similar
findings, the so-called ‘β-cascade’, have been reported in the simulations of Henning-
son, Lundbladh & Johansson (1993) and the experiment of Breuer et al. (1997) for
localized disturbances in plane Poiseuille flow and boundary-layer flow, respectively.

Wall-normal surveys of the streamwise velocity at several streamwise locations were
acquired at two spanwise locations corresponding to a peak and valley for various
levels of ε∆h. The maximum amplitude of the measured eigenfunction profiles (in-
clusive of all spanwise wavenumbers present at fo) were plotted versus the streamwise
location. The normalized amplification curves (w.r.t. uac and h) for the various forcing
combinations at the peak location (ζ = 0) do not collapse. Again, this may be a
result of contributions from other spanwise modal components and/or the effects of
vertical vorticity on uts. Transition occurred in the valley region (ζ = 0.25) before it
occurred in the peak region (ζ = 0). A plot of u/U∞ versus Reynolds number for a
wall-normal location of η ≈ 1.2 is given in figure 19. The transition Reynolds number
is in the approximate range of 9.6× 105 < Retr < 1.2× 106.

Broadband spectra for r.m.s. velocity data at a valley location are presented in
figure 20 for a forcing combination (ε2∆h2) that did not result in breakdown. The
spectral content at a peak location (ζ = 0) was not very different from that at a valley
location (ζ = 0.25). Wave amplification was observed in the unstable T–S band at
both spanwise locations. Figure 21 shows broadband spectra for the largest forcing
product at a peak and valley spanwise location. At the peak location shown in part
(a) of the figure, energy concentrated in frequency bands about the fundamental and
first two harmonics is clearly evident in the transitional zone. The spectra indicate
an abrupt change in the flow state from laminar to turbulent. At the valley in part
(b) of the figure, energy bands at the fundamental and higher-harmonics frequencies
(up to the low-pass filter settings) dominated the spectrum in the transitional zone.
Recall that similar spectral behaviour was observed by Breuer et al. (1996) and
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Figure 20. Spectra of streamwise velocity taken at a valley location ζ = 0.25 and ut,max
(U/U∞ ≈ 0.40) for a scenario where breakdown did not occur (ε2∆h2). Electronic noise at f = 120 Hz
is noted.

King & Breuer (2001) with initial two-dimensional disturbance inputs. The measured
streamwise location at which the harmonic bands first became dominant (R = 1038,
x = 152.4 cm) was just downstream of the appearance of the upwelling of ut(fo) in
the spanwise profiles resulting from the strong spanwise mean shear. The transitional
region associated with the valley appeared to be dominated by coherent disturbances
and to be more gradual than at the peak location.

For the flow configuration where breakdown occurred with two-dimensional wall
waviness (see King & Breuer 2001), energy at subharmonic frequencies was not
observed. To focus on the energy in the subharmonic frequency range, the spectral
data in figure 21 were re-plotted to magnify the desired frequency range. The resulting
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Figure 21. Spectra of streamwise velocity taken at ut,max (U/U∞ ≈ 0.40) for a scenario where
breakdown occurred (ε3∆h3). Measurements were obtained along spanwise locations corresponding
to (a) a peak ζ = 0 and (b) a valley ζ = 0.25.

spectra in addition to the spectra acquired with two-dimensional wall waviness (shown
for comparison) are presented in figure 22 for ε3∆h3. Energy in the subharmonic
frequency band was evident in the spectra for the three-dimensional wall roughness.
The energy in the subharmonic band was not dominated by the actual subharmonic
frequency (fo/2 = 35.5 Hz) but by a broad band of frequencies (20 < f < 50 Hz). The
subharmonic energy at the peak location (ζ = 0) was found to be more significant
than the associated energy at the valley location (refer to parts (b) and (c) of the
figure). At the peak location, narrow-band energy centred at f = 22 Hz and 48 Hz, for
which the source of either was unknown, was evident. Either one of these disturbance
energies can possibly interact with the fundamental frequency (fo = 71 Hz) to produce
the other. Higher-order spectral methods applied to multipoint measurements are
necessary to resolve the issue of a sum or difference interaction. Such measurements
were not acquired in this study. Broader energy bands were also observed for central
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Figure 22. Spectra of streamwise velocity in the subharmonic frequency range taken at ut,max for
scenarios where breakdown occurred. Measurements are shown over a range of streamwise locations
for (a) two-dimensional surface waviness, (b) three-dimensional roughness along ζ = 0, and (c)
three-dimensional roughness along ζ = 0.25.

frequencies of f = 29 Hz and 42 Hz. The same applies to this frequency pair as to
f = 22 Hz and 48 Hz. The first of the main points to be made here is the evidence
of energy in the subharmonic frequency range, though much less than the energy in
the harmonic frequency bands. Secondly, at the peak location where the subharmonic
energy band was largest, more spectral filling/broadening at frequencies in between
the harmonic bands was observed in the transitioning boundary layer (see figure 21)
implying nonlinear interactions between subharmonic and harmonic disturbances.
Last but not least, despite the presence of subharmonic energy, the dominant energy
transfer is clearly to the higher harmonics as is evident from the spectra shown
in figure 21. In other words, there is some redistribution of energy (second-order
effect) to the subharmonic frequency band but the physical process responsible for
spectral broadening is dominated by the nonlinear interactions (self and mutual) of
the fundamental and higher-harmonic energies.

4. Concluding remarks
It has long been recognized that the occurrence of three-dimensional disturbances

is necessary for the laminar-to-turbulent transition process in wall-bounded flows. The
selection process of boundary layers in the so-called natural transition has suggested
oblique modes as an essential ingredient for the onset of breakdown. For this reason,
boundary-layer transition was experimentally forced by exciting a pair of oppositely
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oriented oblique O–S modes, (f/fo,±β/βw) = (1,±1), and investigated to identify the
controlling physics of the transition process. This non-canonical transition scenario
bypasses the traditional two-dimensional T–S disturbances and utilizes the oppositely
oriented oblique O–S disturbances as primary modes.

Previous investigations of this nature by Elofsson & Alfredsson (1998, 2000) and
Wiegel (1996) have used vibrating ribbons, or periodic surface blowing/suction to
generate the flow disturbances. In this study, a clean pair of oppositely oriented
oblique modes was introduced in a laminar boundary layer utilizing the approach
of King & Breuer (2001): the acoustic receptivity of the boundary layer to surface
roughness. The technique used has some features that are worth highlighting. First, the
time scales and the spatial scales are completely decoupled – the first being provided
by the acoustic field and the second coming from the surface roughness pattern. This
makes the experiment very clean and removes difficulties often encountered with non-
uniform ribbon excitation or difficulties in generating uniform or finely controlled
surface pressure oscillations. Secondly, the forcing is very amenable to simulation
in either theoretical or numerical models and for this reason, detailed comparisons
between theory, numerics and experiment should be possible. This study also provides
a useful link between well-documented initial conditions and the occurrence, or non-
occurrence, of transition.

The oblique primary modes, (f/fo,±β/βw) = (1,±1), were observed to interact
nonlinearly to create low- and high-speed streaks that culminated in a peak–valley
structure of the spanwise U-profiles. The growth rates of the streaky structures were
believed to be enhanced by nonlinear (feedback) interactions of two non-stationary
boundary-layer disturbance modes, namely the (1, 1) mode and (1, 3) mode. An
intensification of ut in regions with large spanwise velocity gradients, |dU/dζ|, was
observed that ultimately lead to laminar-to-turbulent transition. Measured modal
velocities were in excellent qualitative agreement with results obtained from spatial
direct numerical simulation by Joslin et al. (1993). The energy transfer between the
measured modes appeared to favour low frequencies, the so-called β-cascade as noted
by Henningson et al. (1993) and later by Breuer et al. (1997). In the laminar-to-
turbulent transition region, the velocity spectra were dominated by the energy at
the forcing frequency fo and higher harmonics, i.e. similar to harmonic cascades
observed by Breuer et al. (1996) and King & Breuer (2001) for two-dimensional
primary disturbances. Energy in the subharmonic frequency range was also observed
in the spectra, though much less than the energy in the harmonic frequency bands.
More spectral filling/broadening at frequencies in between the harmonic bands was
observed in the transitioning boundary layer than observed by King & Breuer (2001)
for two-dimensional primary disturbances, implying nonlinear interactions between
subharmonic and harmonic disturbances. The results demonstrate some redistribution
of energy (second-order effect) to the subharmonic frequency band but the physical
process responsible for spectral broadening is dominated by the nonlinear interactions
(self and mutual) of the fundamental and higher-harmonic energies as found with
fundamental (K-type) breakdown.
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